
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION

Journal of Sound and Vibration 284 (2005) 673–684
0022-460X/$ -

doi:10.1016/j.

E-mail add
www.elsevier.com/locate/jsvi
Green’s function for a plane three-dimensional fluid layer at
small horizontal distances from the source

A. Zinoviev

School of Mechanical Engineering, The University of Adelaide, North Terrace, Adelaide 5005, Australia

Received 13 May 2003; received in revised form 23 December 2003; accepted 5 July 2004

Available online 18 November 2004
Abstract

The Green’s function for a plane three-dimensional layer in its common form is usually determined as an
infinite series of the waveguide’s normal modes. The slow convergence of the series close to the source,
limits the applicability of Green’s function to solving sound generation and scattering problems in
waveguides, especially if near-field effects are significant. In the present work, a more convenient form of
Green’s function for such a waveguide is obtained as a sum of two quickly converging series. The first series
is a difference between the Green’s functions for Helmholtz and Laplace equations, whereas the second
series is Green’s function for the Laplace equation, determined as a sum of the mirror images of the source
in the waveguide boundaries. The behaviour of the obtained function close to the source is investigated.
Numerical experiments show significantly better convergence for the obtained function as compared with
the Green’s function in its common form. It is also shown that the obtained function can be easily
calculated at the points directly underneath or above the source, where the terms of the Green’s function
series in the common form are singular.
r 2004 Elsevier Ltd. All rights reserved.
0. Introduction

The acoustic field in a medium can be represented as an integral over its sources, which are
considered a set of elementary monopoles and dipoles. Such representation is a powerful
technique widely used in acoustics for solving problems of sound generation and scattering. Many
see front matter r 2004 Elsevier Ltd. All rights reserved.
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numerical methods are based on such a representation. One of the most common of these methods
is the boundary element method (BEM) [1], which allows one to solve complex acoustical
problems. Development of methods and models, based on the integral representation of the
acoustic field, continues [2].
As the fields of an elementary monopole and dipole in a medium are represented by Green’s

function for the medium and its spatial derivative, respectively, the ability to calculate values of
Green’s function accurately and efficiently is crucial for the successful use of many numerical
methods. In unbounded media, Green’s function for the Helmholtz equation has a simple form
[3], although it may require the use of desingularizing procedures at close distances from the
source [4].
In waveguides, however, the calculation of Green’s function meets substantial difficulties.

Commonly a waveguide Green’s function is represented as either a series of mirror images of the
source in the waveguide walls or a series of the waveguide normal modes [5]. Due to poor
convergence of both series, especially near the source, attempts have been made to derive
alternative expressions for waveguide Green’s functions, which would allow trouble-free
numerical implementation. For instance, Linton [6] compared several expressions for the Green’s
function of the two-dimensional Helmholtz equation in periodic domains and waveguides. In a
recent publication [7], another representation for a two-dimensional waveguide Green’s function
is derived. The author with his co-authors previously suggested a way of obtaining the expression
for such a Green’s function as a sum of quickly converging series and an asymptotic term [8].
Further development of this technique allowed the author to carry out an investigation of the
influence of near-field resonances on the scattered far field [9].
All of the above-mentioned publications, however, deal with two-dimensional waveguides.

While two-dimensional models can produce valid results in a number of cases, in most real
situations three-dimensional scattering must be considered. For example, solving scattering
problems in such areas as sonar technology and geological surveying, require the development of
three-dimensional models of scattering.
In three-dimensional waveguides, the problem of slow convergence of the Green’s function is

commonly solved by truncating the Green’s function series at some mode number N: This
truncation is often justified by the fact that only a few lowest normal waveguide modes propagate
through the waveguide, while all others are evanescent and exponentially decay with increasing
distance from the source.
In many cases, however, higher-order evanescent modes play an important role in acoustic

scattering. It is known that various types of acoustic and elastic waves may be excited near the
elastic scattering surface [10,11], significantly affecting the scattered wave in the far field. For
example, such waves may cause multiple pulse echoes [10].
To consider such effects theoretically, it is necessary to develop a self-consistent model, which

allows for multiple scattering of the acoustic field by different parts of the scattering object as well
as by the waveguide boundaries. As the multiple scattering in the near field is described by the
evanescent waveguide modes, considering these modes in the Green’s function is crucial for
correct prediction of characteristics of the scattered field in a three-dimensional waveguide.
Furthermore, Green’s function in its traditional form is not applicable to sound propagation

directly underneath or above the source. As every term of the Green’s function series has a
singularity at zero horizontal distance from the source, calculation of the three-dimensional
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Green’s function below or above the source is not possible. This significantly restricts the use of
integral representation of the acoustic field in solving three-dimensional scattering problems in
waveguides.
In the present article, an expression for the efficient calculation of Green’s function for a three-

dimensional plane fluid layer is obtained. The convergence of the obtained series is further
improved at small horizontal distances from the source. It is shown by numerical examples that
the obtained series converges significantly quicker than the Green’s function in its traditional
form. It is demonstrated also that the obtained expression can be evaluated efficiently at the
points directly above or underneath the source.
1. Three-dimensional waveguide Green’s function

A three-dimensional waveguide in the form of a fluid layer of depth, D; bounded by two infinite
plane boundaries, is considered (Fig. 1). The boundaries of the layer are parallel to the x- and
y-axis, whereas the z-axis is vertical and directed from the bottom to the top. The layer is filled
with a compressible inviscid homogeneous fluid of density, r0; and sound speed, c0:
A harmonic temporal dependence, expð�iotÞ; is assumed, where o is the angular frequency.

Green’s function for the layer, Gðx; y; z; x0; y0; z0Þ; is proportional to the pressure field of an
elementary monopole and satisfies the following equation [3]:

ðr2 þ k̄
2
ÞGðx; y; z; x0; y0; z0Þ ¼ dðx � x0Þdðy � y0Þdðz � z0Þ; k̄ ¼ o=c0; (1)

where ðx; y; zÞ are the coordinates of the observation point, and ðx0; y0; z0Þ are the coordinates of
the source point. The top and bottom boundaries of the layer are assumed acoustically soft and
rigid respectively, so that the following boundary conditions are satisfied:

Gjz¼D ¼ 0;
qG

qz

����
z¼0

¼ 0: (2)

The waveguide considered in this paper is a model of an ocean, where the boundary between
water and the atmosphere can be described as soft (zero pressure), and the ocean bottom can be
regarded as rigid (zero velocity).
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Fig. 1. Geometry of the waveguide. (1) Source point, ðx0; y0; z0Þ; (2) observation point, ðx; y; zÞ; r is the distance

between the source and observation points in the ðx; yÞ plane.



ARTICLE IN PRESS

A. Zinoviev / Journal of Sound and Vibration 284 (2005) 673–684676
In further analysis, all variables and parameters that have the dimension of length are
normalized on D=p: With the use of this normalization, the solution of Eq. (1) is commonly
written as follows [5]:

GCðr; z; z0Þ ¼
X1
n¼1

Gnðr; z; z0Þ; (3)

Gnðr; z; z0Þ ¼
i

2p
cos½ðn � 0:5Þz0
 cos½ðn � 0:5Þz
H ð1Þ

0 ðgnrÞ; (4)

where H
ð1Þ
0 ðgnrÞ is a Hankel function of the first kind of zero order, r is the distance between the

source and the observation points in the plane ðx; yÞ:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � x0Þ

2
þ ðy � y0Þ

2
q

; (5)

and gn are longitudinal wavenumbers, determined by

gn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

� ðn � 0:5Þ2
q

: (6)

It may be noted that the non-dimensional wavenumber, k ¼ k̄D=p; is the number of acoustic half-
wavelengths, which can be fitted into D:
The Green’s function in its common form, GC ; is an infinite series of the waveguide normal

modes. To be employed in a numerical algorithm, the series needs to be truncated, and in most
applications, only modes of orders nok þ 0:5 are taken into consideration. Indeed, the amplitude
of the lower order modes of the waveguide decreases with distance as 1=

ffiffiffi
r

p
; whereas the higher

modes of orders n4k þ 0:5 decay exponentially and, therefore, their direct contribution to the far
field can be neglected.
The Green’s function, truncated in this way, correctly determines the far pressure field of an

elementary monopole source. However, if the size of a scattering object is finite, such truncation
does not take into account the indirect influence of the exponentially decaying evanescent modes
on the far field through boundary conditions on the surface of the object [9]. Due to this influence,
obtaining amplitudes of the lower propagating modes in far field requires the evaluation of the
Green’s function at small intervals between the source and observation points. It can be shown
that Eq. (3) is not suitable for this purpose due to its poor convergence at ro1: In fact, the
Hankel function H

ð1Þ
0 ðgnrÞ tends to infinity when its argument tends to zero [3], and evaluation of

the Green’s function in the form of Eq. (3) becomes unfeasible at small r: Besides, as every term of
Eq. (3) is singular at r ¼ 0 regardless of the vertical distance, jz � z0j; between the source and
observation points, Eq. (3) is not suitable for determining the acoustic field above or underneath
the source. Therefore, transformation of GC to a better converging form becomes necessary for
achieving an accurate solution for a scattering problem in a three-dimensional waveguide.
2. Transformation of the Green’s function

To transform the Green’s function, determined by Eq. (3), into a more convenient form, let an
auxiliary function, Ḡðr; z; z0Þ; be added to and subtracted from Eq. (3), so that the Green’s
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function takes the following modified form:

GM ¼
X1
n¼1

Gn þ Ḡ � Ḡ: (7)

It will be convenient to represent the function Ḡ as Green’s function of the Laplace equation,
which is the solution of Eq. (1) at k̄ ¼ 0: Eqs. (3) and (4) lead to the following expression for Ḡ:

Ḡðr; z; z0Þ ¼
X1
n¼1

Ḡnðr; z; z0Þ; (8)

Ḡnðr; z; z0Þ ¼
1

p2
cos½ðn � 0:5Þz0
 cos½ðn � 0:5Þz
K0½ðn � 0:5Þr
; (9)

where K0ðxÞ is the modified Hankel function of zero order.
On the other hand, the function Ḡ can be represented as a series of mirror images of the source

in the waveguide boundaries [5]:

Ḡðr; z; z0Þ ¼
1

4p

X1
n¼1

fSþ
n ðr; z þ z0Þ þ S�

n ðr; z þ z0Þ þ Sþ
n ðr; z � z0Þ þ S�

n ðr; z � z0Þg; (10)

where

S�
n ðr; zÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pð2n � 1� 1Þ � zÞ2 þ r2

q �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pð2n � 1Þ � zÞ2 þ r2
q : (11)

It may be noted that Eq. (10) can be derived from Eqs. (8) and (9) by means of known formulas
for transformation of Hankel function series [12].
With the use of Eqs. (7)–(11), the modified Green’s function for the three-dimensional fluid

layer can be written as

GMðr; z; z0Þ ¼ ~Gðr; z; z0Þ þ Ḡðr; z; z0Þ; (12)

where

~Gðr; z; z0Þ ¼
X1
n¼1

i

2p
H

ð1Þ
0 ðgnrÞ �

1

p2
K0 n � 1

2

� �
r

� �	 


� cos n �
1

2

	 

z0

� �
cos n � 1

2

� �
z

� �
; ð13Þ

and Ḡ is determined by Eqs. (10) and (11).
Since Hankel functions H

ð1Þ
0 ðxÞ and K0ðxÞ are linked as follows:

K0ðxÞ ¼
1
2
piH ð1Þ

0 ðixÞ (14)

and

gn ¼ i n � 1
2

� �
þ Oðk=nÞ2; nbk; (15)

both terms in the series in Eq. (13) tend to each other as n increases. This leads to the con-
vergence of the series in Eq. (13) at r40: The series can be said to describe the contribution of
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the lower order waveguide modes. On the other hand, the function Ḡ does not depend on
the wavenumber k and determines the contribution of higher waveguide modes up to
infinite order. The convergence of the function Ḡ can be proved by the fact that the terms
of Eq. (11) tend to zero as 1=n2 at large nbr=4p: Thus, the modified Green’s function GM

converges at all non-zero horizontal distances r between the source and observation
points.
3. Modified Green’s function at zero horizontal distance from the source

Since both Hankel functions, H
ð1Þ
0 ðgnrÞ and K0½ðn � 1

2
Þr
; are singular at r ¼ 0; efficient

calculation of the Green’s function at r ! 0 requires its further transformation. At x51 the
functions H

ð1Þ
0 ðxÞ and K0ðxÞ can be approximated as follows [13]:

H
ð1Þ
0 ðxÞ ¼ 1þ

2i

p
C þ ln

x

2

 �
þ Oðx2 ln xÞ; (16)

K0ðxÞ ¼ � C þ ln
x

2

 �
þ Oðx2 ln xÞ; C ¼ 0:57721 . . . : (17)

At r ! 0 Eqs. (16) and (17) can be substituted into Eq. (13), which can be shown to take the
following form:

~Gðr; z; z0Þ ¼
X1
n¼1

cos n � 1
2

� �
z0

� �
cos n � 1

2

� �
z

� �

�

i

2p
H k þ 1

2
� n

� �
þ

1

p2
ln

n � 1
2

jgnj

� �
; r ¼ 0

i

2p
H

ð1Þ
0 ðgnrÞ �

1

p2
K0 n � 1

2

� �
r

� �� �
; r40;

8>>><
>>>:

ð18a;bÞ

where the Heaviside step function, HðxÞ; is determined by [14]

HðxÞ ¼
0; xo0;

1; xX0:

�
(19)

Eq. (18a) determines the Green’s function for the waveguide directly underneath or above the
source.
4. Improving convergence of the modified Green’s function

Although the series in Eq. (18) converges, the convergence of a series, containing logarithm, is
slow. However, the convergence of this particular series can be improved by applying a technique,
which is similar to the technique used in the derivation of Eq. (12).
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It can be shown that the logarithmic term in Eq. (18) at nbk can be approximated as

ln
n � 1

2

jgnj
¼

k2

2ðn � 1
2
Þ
2
þ O

k

n

	 
4

; nbk: (20)

With the use of known summation formulas [15], the following equation can be obtained:

1

2p2
X1
n¼1

1

ðn � 1
2
Þ
2
cos n � 1

2

� �
z

� �
cos n � 1

2

� �
z0

� �
¼
1

4
1�

1

2p
ðz þ z0Þ �

1

2p
jz � z0j

	 

: (21)

If Eq. (21) is added to and subtracted from Eqs. (13) and (18), the function ~G can be determined
as follows.

~Gðr; z; z0Þ

¼

P1
n¼1

cos n � 1
2

� �
z0

� �
cos n � 1

2

� �
z

� � i

2p
H k þ 1

2
� n

� �
þ

1

p2
ln

n � 1
2

jgnj
�

k2

2p2
1

ðn � 1
2
Þ
2

" #

þ
k2

4
1�

1

2p
ðz þ z0Þ �

1

2p
jz � z0j

	 

if r ¼ 0;

P1
n¼1

cos n � 1
2

� �
z0

� �
cos n � 1

2

� �
z

� � i

2p
H

ð1Þ
0 ðgnrÞ �

1

p2
K0 n � 1

2

� �
r

� ��

�
k2

2p2
1

ðn � 1
2
Þ
2

#
þ

k2

4
1�

1

2p
ðz þ z0Þ �

1

2p
jz � z0j

	 

if 0or5D;

P1
n¼1

cos n � 1
2

� �
z0

� �
cos n � 1

2

� �
z

� � i

2p
H

ð1Þ
0 ðgnrÞ �

1

p2
K0 n � 1

2

� �
r

� �� �
otherwise:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð22a;b; cÞ

Eqs. (10)–(12) and (22) represent the contribution of this paper. As all the series in these
equations converge quickly, they allow one to calculate the three-dimensional waveguide Green’s
function at arbitrary distances from the source. The convergence of the series is demonstrated by
numerical examples in the next section.
5. Numerical results

Figs. 2–7 show results of calculation of the Green’s function in its common form, GC , and in its
modified form, GM : Calculations are carried out at the horizontal distances from the source, r;
smaller than the waveguide depth, D; for two values of the non-dimensional wavenumber, k ¼ 5
and k ¼ 50:
The criterion used for determining the convergence of the series can be formulated as follows. A

series, determined by

S ¼
X1
n¼1

Sn (23)
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is considered to have converged at some n ¼ N; if the condition

jReðSNÞjp� Re
XN

n¼1

Sn

 !�����
�����; 0o�51 (24)

is satisfied for three sequential terms SN�2;SN�1; and SN : To achieve the convergence of the
imaginary part of the series, it is sufficient to take into consideration any number of terms, which
is not less than k þ 1

2:
Fig. 2. Absolute value of the Green’s function multiplied by the horizontal distance, r; from the source versus the

normalized r; z ¼ z0 ¼ D=2; k ¼ 5: (1) GM ; � ¼ 10�4; (2) GC ; � ¼ 10�4; (3) GC ; � ¼ 10�6:

Fig. 3. Number of terms necessary to achieve convergence of the Green’s function series versus the normalized r;
z ¼ z0 ¼ D=2; k ¼ 5: (1) ~G; � ¼ 10�4; (2) GC ; � ¼ 10�4; (3) GC ; � ¼ 10�6:
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Fig. 4. Absolute value of the Green’s function multiplied by the horizontal distance, r; from the source versus the

normalized r; z ¼ z0 ¼ D=2; k ¼ 50: (1) GM ; � ¼ 10�4; (2) GC ; � ¼ 10�4; (3) GC ; � ¼ 10�6:

Fig. 5. Number of terms necessary to achieve convergence of the Green’s function series versus the normalized r;
z ¼ z0 ¼ D=2; k ¼ 50: (1) ~G; � ¼ 10�4; (2) GC ; � ¼ 10�4; (3) GC ; � ¼ 10�6:

A. Zinoviev / Journal of Sound and Vibration 284 (2005) 673–684 681
Eq. (22b) is used for the calculation of the modified Green’s function at 0oro10�4D; whereas
Eq. (22c) is utilized for r410�4D: The choice of the boundary between the areas of application of
the two equations affects only the number of terms required to achieve convergence of the series
and does not influence the convergence by itself.
Figs. 2 and 4 show the absolute value of the Green’s function in its common, GC ; and modified,

GM ; forms versus the horizontal distance from the source, r; normalized on the waveguide depth,
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Fig. 6. Absolute value of the modified Green’s function GM multiplied by the vertical distance, jz � z0j; from the source

versus the normalized jz � z0j; � ¼ 10�4; r ¼ 0; k ¼ 5:

Fig. 7. Number of terms necessary to achieve convergence of the function ~G versus the normalized jz � z0j; � ¼
10�4; r ¼ 0; k ¼ 5:

A. Zinoviev / Journal of Sound and Vibration 284 (2005) 673–684682
D, for k ¼ 5 and 50, respectively. For better clarity of the graphs, the sharp rise of the Green’s
function at r ! 0 is eliminated by multiplying the Green’s function by r: Figs. 3 and 5 show the
number of terms necessary to achieve the convergence of the series GC and ~G as determined by
Eq. (24). The convergence of the series Ḡ; determined by Eqs. (10) and (11), is considered further
in this section.
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At r ! 0 and z ¼ z0 the Green’s function for the waveguide is expected to depend on r in the
same way as the Green’s function in an unbounded fluid. It can be seen easily from Fig. 2, that
only the modified Green’s function (curve 1) tends to the expected value of 1=ð4prÞ at r ! 0: This
is achieved by summation of only a small number of terms of the series (Fig. 3, curve 1). At the
same time, the calculation of the common Green’s function, GC ; with the same � ¼ 10�4 (Fig. 2,
curve 2), does not converge to the correct value at r=Do10�2 even though the number of terms
approaches 104: Further decrease of the convergence error � to 10�6 (Fig. 2, curve 3) improves the
result only partially. It can be seen that the calculated Green’s function significantly diverges from
the required asymptotic behaviour at r=Do10�4; and even this imperfect result requires hundreds
of thousands of terms (Fig. 3, curve 3).
Figs. 4 and 5, corresponding to k ¼ 50; show that the convergence of the series does not

depend significantly on the wavenumber k. The discrepancy between the common and modified
Green’s functions is of the same order, and the number of terms required for the convergence of
the common Green’s function is equally large. The larger number of terms, needed for the
convergence of the modified Green’s function, can be explained by the requirement that the
number of terms should not be less than k þ 1

2
:

Figs. 6 and 7 demonstrate a significant property of the modified Green’s function. They
represent, respectively, the Green’s function and the number of terms in the series versus the
normalised vertical distance from the source at zero horizontal distance, r: Whereas the
calculation of the Green’s function by means of the traditional equation (3) is not possible at
r ¼ 0 due to the singularity in every term of the series, Figs. 6 and 7 show, that the Green’s
function in its modified form (Eq. (12)) can be easily calculated directly above or underneath the
source. The required number of terms is no more than 30 at most points, and only near the points
where ReðGMÞ is zero, does the number of terms reach the order of 102:
The numerical experiments also confirm the convergence of the series Ḡ; determined by

Eqs. (10) and (11). The number of terms, needed to achieve convergence varied from just 4 at
r=D ¼ 10�6 to 17 at r=D ¼ 1: The increase in the number of terms with the distance r can be
explained by the fact that the series Ḡ is convergent only at nbr=4p: At large distances, all the
series continue to converge, but the number of terms in the series Ḡ increases.
6. Conclusions

In the present work, a modified Green’s function for a three-dimensional fluid layer is derived.
The modified Green’s function consists of two series. One of the series is the difference between
the Green’s function of the Helmholtz equation and the Green’s function of the corresponding
Laplace equation, written as a series of the waveguide normal modes. The second series is the
Greens’ function of the Laplace equation, written as a series of mirror images of the source in the
waveguide walls. The modified Green’s function is transformed further to improve its convergence
at small horizontal distances, r; from the source.
The numerical experiments show that the modified Green’s function can be calculated much

more efficiently than the Green’s function in its common form if r is smaller than the waveguide
depth. The number of terms, needed to achieve the convergence of the modified Green’s function,
is no more than several dozens at any r within the considered range. On the other hand, despite
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taking into account hundreds of thousands of terms, the calculation of the Green’s function in its
common form did not produce correct results at small r:
An important advantage of the obtained Green’s function is that it is possible to calculate its

values at r ¼ 0; where terms of the common Green’s function series are singular. This property,
confirmed by numerical experiments, allows one to calculate the Green’s function directly above
or underneath the source.
In summary, the modified Green’s function, obtained in the present work, overcomes the

shortcomings of the traditional form of the Green’s function at horizontal distances from the
source smaller than the waveguide depth. The ability to calculate values of the Green’s function
near the source in three-dimensional waveguides opens an opportunity to develop self-consistent
models of scattering, which will properly take into account the influence of near-field acoustic
phenomena on the scattered far field.
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